ООО «НТЗ «Волхов»

УТВЕРЖДАЮ:

Технический директор ООО «НТЗ «Волхов»

Альбеков В.Х.

« 01»

2018

ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ
НОЛ-НТ3-6 (10)-11E УХЛ2, Т2
НОЛ-НТ3-15 (20)-11E УХЛ2, Т2
0.НТ3.135-021 ТИ
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

СОГЛАСОВАНО:

Заместитель технического директора
ООО «НТЗ «Волхов»

Пимурзин С.Г.

« ОТ» 10 2018

РАЗРАБОТАЛ:

Ведущий инженер-конструктор

000 «НТЗ «Волхов»

Городецкий Д.И.

« O1 »

2018

Содержание

Введение	3
1 Назначение	
2 Основные технические данные	
3 Устройство	5
4 Размещение и монтаж	5
5 Маркировка	6
6 Меры безопасности	7
7 Техническое обслуживание	7
8 Условное обозначение	9
Приложение А	11
Приложение Б	13

Введение

Настоящая информация предназначена для ознакомления с конструкцией и техническими характеристиками, а также содержит сведения по монтажу и эксплуатации незаземляемых трансформаторов напряжения с литой изоляцией НОЛ-НТЗ-6 (10, 15, 20)-11E УХЛ2, Т2. В дополнение к настоящей информации следует пользоваться паспортом и руководством по эксплуатации на конкретное типоисполнение трансформатора.

Все приведенные в технической информации величины справочные. Изготовитель оставляет за собой право изменения отдельных параметров в случае изготовления специальных трансформаторов с улучшенными техническими характеристиками.

1 Назначение

Незаземляемые трансформаторы напряжения НОЛ-НТЗ-6 (10, 15, 20)-11Е УХЛ2, Т2 (именуемые в дальнейшем трансформаторы) предназначены для установки в комплектные распределительные устройства (КРУ) внутренней установки, в сборные камеры одностороннего обслуживания (КСО), в другие электроустановки и являются комплектующими изделиями.

Трансформаторы обеспечивают передачу сигнала измерительной информации приборам измерения, устройствам защиты, сигнализации, автоматики, управления, а также контроля изоляции. Предназначены для использования в цепях коммерческого и технического учетов электроэнергии в электрических установках на соответствующий класс напряжения.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» или «Т» категории размещения 2 по ГОСТ 15150-69 и предназначены для работы в следующих условиях:

- верхнее значение температуры окружающего воздуха при эксплуатации с учетом перегрева внутри ячейки для исполнения «УХЛ» плюс 55 °C, для исполнения «Т» плюс 60 °C;
- нижнее значение температуры окружающего воздуха минус 60 °C для исполнения «УХЛ», минус 10 °C для исполнения «Т»;
- относительная влажность воздуха для исполнения «УХЛ» 100 % при плюс 25 °C, для исполнения «Т» 100 % при плюс 35 °C;
- высота над уровнем моря не более 1000 м;
- окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы атмосфера типа II по ГОСТ 15150-69;
- положение трансформаторов в пространстве любое.

Трансформаторы, предназначенные для использования в системах нормальной эксплуатации атомных станций (именуемых в дальнейшем АС), относятся к классу 4 по 2.6 НП-001.

Трансформаторы, предназначенные для использования в системе важной для безопасности нормальной эксплуатации АС, относятся к классу 3 и имеют классификационное обозначение 3H по 2.6 HП-001.

Трансформаторы, предназначенные для использования в системе безопасности АС, относятся к классу 2 и имеют классификационное обозначение 2О по 2.6 НП-001.

Для ОАО «РЖД» областью применения трансформаторов являются тяговые подстанции, трансформаторные подстанции и линейные устройства тягового электроснабжения железных дорог.

2 Основные технические данные

Основные технические данные трансформаторов приведены в таблице 1. Конкретные значения технических характеристик определяются после запроса и указываются в паспорте на трансформатор.

Таблица 1 – Основные технические данные трансформаторов

Цаимонованию парамотра	Значение параметра			
Наименование параметра	НОЛ-НТ3-6(10)-11Е		НОЛ-НТ3-15(20)-11Е	
Класс напряжения, кВ	6	10	15	20
Наибольшее рабочее напряжение, кВ	7,2	12	17,5	24
Номинальное напряжение первичной обмотки, кВ	3 3,3 6 6,3 6,6 6,9 ¹⁾	10 10,5 11 ¹⁾	15 ¹⁾	20 ¹⁾
Номинальное напряжение вторичной обмотки, В	100; 110; 120; 127; 200; 220 ¹⁾		0 ¹⁾	
Класс точности вторичной обмотки	0.2; 0.5; 1.0; 3.0			
Номинальная мощность вторичной обмотки, ВА	см. таблицу 2 ¹⁾			
Предельная мощность вне класса точности, ВА	400; 630 630		30	
Номинальная частота, Гц		50 ил	ıи 60 ²⁾	
Группа соединения обмоток				
- с одной вторичной обмоткой	1/1-0			
- с двумя вторичными обмотками 1/1/1-0-0				
¹⁾ По требованию заказчика трансформаторы могут быть изгото	влены с други	ми номиналы	ными значения	ми.

обмоток, Таблица 2 -Диапазон значений номинальных мощностей вторичных для соответствующих классов точности трансформаторов

Наименование	Класс точности	Класс точности	Номинальная	Суммарная
трансформатора	первой	второй	мощность одной	мощность
	вторичной	вторичной	вторичной обмотки	вторичных обмоток
	обмотки	обмотки	при заданном классе	при заданном
			точности, ВА	классе точности, ВА
			одна обмотка	две обмотки
НОЛ-НТЗ-6(10)-11Е	0.2	0.2(0.5;1.0;3.0)	5-30	10-30
	0.5	0.5(1.0;3.0)	10-75	20-75
	1.0	1.0(3.0)	20-150	50-150
	3.0	3.0	100-300	150-300
НОЛ-НТЗ-(15)20-11Е	0.2	0.2(0.5;1.0;3.0)	5-50	10-60
	0.5	0.5(1.0;3.0)	10-150	20-150
	1.0	1.0(3.0)	20-250	50-250
	3.0	3.0	100-400	150-400

²⁾ Для экспортных поставок.

Трансформаторы выполняются с двумя уровнями изоляции «а» или «б» по ГОСТ 1516.3-96. Уровень частичных разрядов изоляции первичной обмотки всех трансформаторов (независимо от уровня изоляции) не превышает значений, указанных в таблице 3.

Таблица 3 – Уровень частичных разрядов изоляции первичной обмотки

Класс напряжения, кВ	Напряжения измерения ЧР, кВ	Допускаемый уровень ЧР, не более, пКл
C	7,2	50
6	4,6	20
10	12	50
	7,7	20
15	18	50
15	11,5	20
20	24	50
	15,3	20

Класс нагревостойкости трансформаторов - «В» по ГОСТ 8865-93.

3 Устройство

Трансформаторы изготовлены в виде опорной конструкции. Корпус трансформаторов выполнен из эпоксидного компаунда, который одновременно является главной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.

Трансформаторы с различными конструктивными исполнениями и классом напряжения отличаются между собой размерами корпуса, формой и массой. Габаритные, установочные и присоединительные размеры трансформаторов различных исполнений указаны в приложении А настоящей технической информации. Принципиальные электрические схемы приведены в приложении Б.

Выводы первичной обмотки расположены на верхней поверхности трансформаторов. Выводы вторичных обмоток расположены в нижней части трансформаторов, в клеммной коробке на металлическом основании и имеют исполнение «Е».

На трансформаторы устанавливаются прозрачные крышки с возможностью пломбирования с целью исключения несанкционированного доступа к вторичным выводам.

Трансформаторы имеют болт заземления М8, расположенный на металлическом основании, возможность заземления одного из выводов вторичных обмоток непосредственно на основание.

По специальному требованию заказчика возможно изготовление трансформаторов с другими установочными или присоединительными размерами.

4 Размещение и монтаж

Крепление трансформаторов НОЛ-HT3-6(10)-11E на месте установки производится с помощью болтов М10, трансформаторов НОЛ-HT3-15(20)-11E — помощью болтов М12 через отверстия в металлическом основании.

Провода, присоединяемые к вторичным выводам трансформаторов, должны быть снабжены наконечниками или свернуты в кольцо под винт М5 и облужены.

Длина пути утечки внешней изоляции, в зависимости от класса напряжения, должна быть не менее значений, указанных в таблице 4.

Таблица 4 – Длина пути утечки внешней изоляции

Класс напряжения, кВ	Длина пути утечки, не менее, мм
6 10	228
15	220
20	328

Напряжения коротких замыканий (U_{κ}) на вторичных обмотках должны быть не более 5% от номинального напряжения соответствующей обмотки.

При монтаже следует соблюдать требования ГОСТ 10434-82 для контактных соединений по моменту затяжки:

- для M5 (2±0,4) H⋅м;
- для M8 (22±1,5) H⋅м;
- для M10 (30±1,5) H·м.

Для крепёжных элементов момент затяжки:

- для M4 (0,4±0,1) H·м;
- для M10 (30±1) H·м;
- для M12 (40±2) H·м.

В случае неиспользования вторичной обмотки трансформаторов необходимо произвести соединение одного из выводов этой вторичной обмотки с заземляющим устройством по требованию п. 3.4.24 ПУЭ изд. 7.

5 Маркировка

Трансформаторы имеют табличку технических данных, выполненную по ГОСТ 1983-2015.

Маркировка первичной и вторичных обмоток выполнена методом литья на корпусе трансформаторов или методом липкой аппликации по ГОСТ 1983-2015 или IEC 61869-3, согласно таблице 5.

Таблица 5 – Маркировка

Первичная обмотка		Вторичные обмотки	
ΓΟCT 1983-2015	IEC 61869-3	ГОСТ 1983-2015	IEC 61869-3
А	А	α1	a (1a) ¹⁾
Χ	В	x1	Ь (1b) ²⁾
		α2	2α
		x2	2b

¹⁾ а – для трансформаторов с одной вторичной обмоткой;

Маркировка транспортной тары выполнена по ГОСТ 14192-96 и нанесена непосредственно на тару.

¹а – для трансформаторов с двумя вторичными обмотками.

²⁾ b – для трансформаторов с одной вторичной обмоткой;

¹b – для трансформаторов с двумя вторичными обмотками.

6 Меры безопасности

трансформаторов должна Конструкция, монтаж И эксплуатация соответствовать требованиям безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75, «Правил технической эксплуатации электроустановок потребителей», «Правил технической эксплуатации электрических станций и сетей Российской Федерации», «Правил устройства электроустановок» «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок».

7 Техническое обслуживание

При техническом обслуживании трансформаторов необходимо соблюдать правила раздела «Меры безопасности».

Техническое обслуживание проводится в сроки, предусмотренные для технического обслуживания электроустановки, в которую встраиваются трансформаторы.

Техническое обслуживание проводится в следующем объеме:

- 1) Внешний осмотр трансформаторов на отсутствие повреждений.
- 2) Очистка поверхности трансформаторов от пыли и грязи, снятие окисной пленки с первичных и вторичных контактов.
- 3) Измерение электрического сопротивления изоляции обмоток трансформаторов. Измерение электрического сопротивления изоляции обмоток относительно металлических деталей крепления к заземленной конструкции и между обмотками производится мегомметром. Сопротивление должно быть не менее значений, указанных в таблице 6.

Таблица 6 – Электрическое сопротивление изоляции обмоток

Nº		Испытательное	Минимально
п/п	Наименование испытаний	напряжение	допустимое
11/11		мегомметра, В	значение, МОм
1	Измерение электрического сопротивления	1000 300	
	изоляции первичной обмотки	1000	300
2	Измерение электрического сопротивления	1000 50	
	изоляции вторичной обмотки	1000	30

Трансформаторы считаются прошедшими испытание, если сопротивление изоляции при нормальных климатических условиях не менее значений, указанных в таблице 6.

- 4) Испытание электрической прочности изоляции вторичных обмоток трансформаторов одноминутным напряжением промышленной частоты, равным 3 кВ.
- 5) Испытание электрической прочности изоляции первичной обмотки трансформаторов. Испытание электрической прочности изоляции первичной обмотки трансформаторов проводится по методике ГОСТ 1516.2.

Таблица 7 – Допустимые испытательные напряжения при частоте 50 Гц

Класс напряжения, кВ	Испытательные напряжения, кВ
6	28,8
10	37,8
15	49,5
20	58,5

Испытание проводятся в три этапа:

- 5.1) Испытательное напряжение, значение которого приведено в таблице 8, частотой 50 Гц прикладывается к закороченным выводам первичной обмотки «А» и «Х» и выдерживается в течение 1 минуты. При этом вторичные выводы « x_1 », « x_2 » и металлические части трансформатора должны быть заземлены.
- 5.2) Напряжение частотой 150-400 Гц подается со стороны первичной обмотки на вывод «Х». Вывод «А» первичной обмотки, вторичные выводы « x_1 », « x_2 » и металлические части трансформатора при этом должны быть заземлены. Напряжение, значением $2U_{\text{ном}}$, выдерживается в течение времени, рассчитанного по следующей формуле:

$$t = \frac{2 \cdot f_{\text{HOM}}}{f_{\text{HCH}}} \cdot 60,$$

где:

t – время выдержки испытательного напряжения, с;

 $f_{\text{ном}}$ – номинальная частота, Гц;

 $f_{исп}$ — испытательная частота, Гц.

5.3) Испытание повторяется с подачей напряжения на вывод «А» и заземлением вывода «Х» первичной обмотки.

Допускается проводить 2 и 3 этапы испытания индуктированным напряжением со стороны вторичной обмотки.

Трансформаторы считаются выдержавшими испытание, если не произошло пробоя изоляции или перекрытия по поверхности.

- 6) Измерение сопротивления обмоток трансформаторов постоянному току. Измерение производится мостом постоянного тока, либо другим прибором измерения, имеющего класс точности не ниже 1. Измеренное значение сопротивления не должно отличаться от указанного в паспорте более чем на 2 %;
- 7) Измерение тока и потерь холостого хода трансформаторов. Измерение тока холостого хода проводится при напряжении 1,0·U_{ном} по методике ГОСТ 3484.1-88.

Напряжение подаётся на выводы первой вторичной обмотки $«a_1»$, $«x_1»$, при этом выводы второй вторичной обмотки $«a_2»$, $«x_2»$ разомкнуты, металлические части трансформатора заземлены. Полученные значения не должны отличаться от значений, указанных в паспорте на изделие более, чем на 10 %. Схемы проведения испытания представлены на рисунках 1, 2.

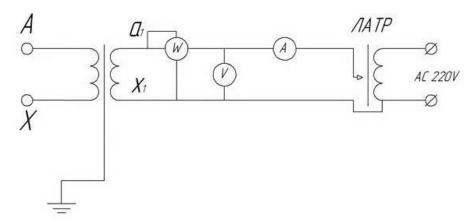


Рисунок 1 — Схема проведения испытания для трансформаторов с одной вторичной обмоткой.

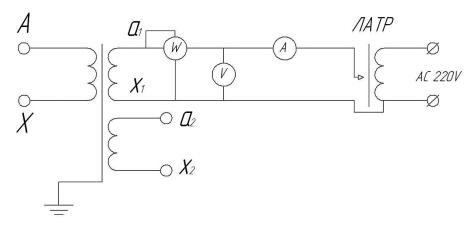
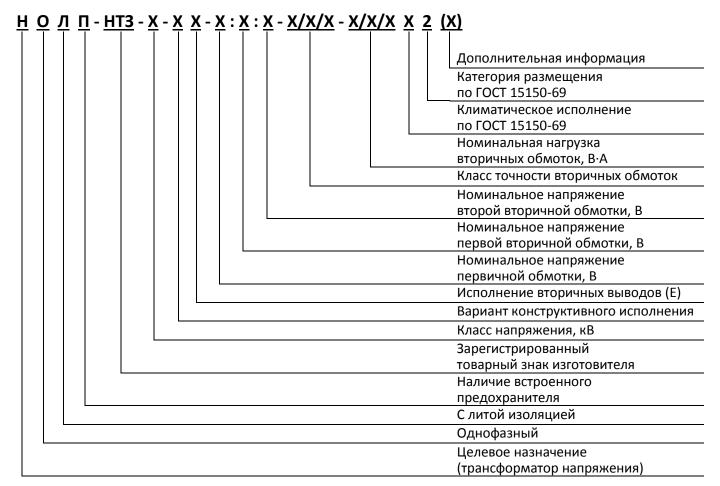


Рисунок 2 — Схема проведения испытания для трансформаторов с двумя вторичными обмотками.

Трансформаторы подлежат периодической поверке по методике ГОСТ 8.216-2011. Межповерочный интервал – 16 лет.


Трансформаторы ремонту не подлежат.

Средняя наработка до отказа — 4.10^5 часов.

Средний срок службы – 30 лет.

8 Условное обозначение

Расшифровка условного обозначения трансформаторов:

Пример записи обозначения трансформатора напряжения незаземляемого, однофазного, электромагнитного, с литой изоляцией, класса напряжения 20 кВ, конструктивного варианта исполнения «11E», с номинальным напряжением первичной обмотки 20000 В с обмоткой для подключения цепей измерения с номинальным напряжением 100 В, с номинальной мощностью 50 В·А в классе точности 0,2, климатического исполнения УХЛ категории размещения 2 по ГОСТ 15150-69 при его заказе и в документации другого изделия:

Трансформатор напряжения НОЛ-НТ3-20-11E-20000:100-0.2-50 УХЛ2 ТУ 3414-005-30425794-2012

При выборе исполнения трансформаторов необходимо руководствоваться приложением А и таблицей 1 настоящей технической информации.

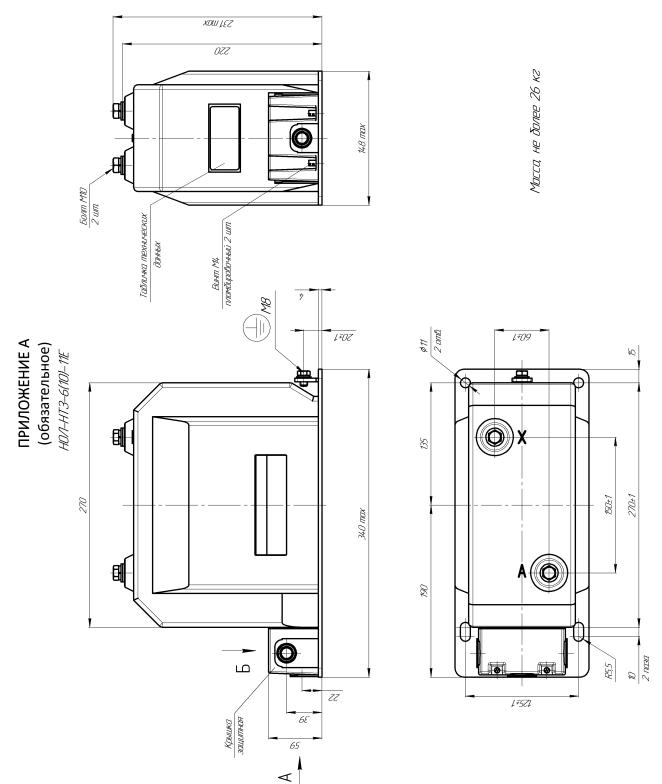


Рисунок А.1 – Габаритные, установочные, присоединительные размеры и масса трансформаторов НОЛ-НТЗ-6(10)-Е Варианты расположения вторичных выводов см. рисунок А.3

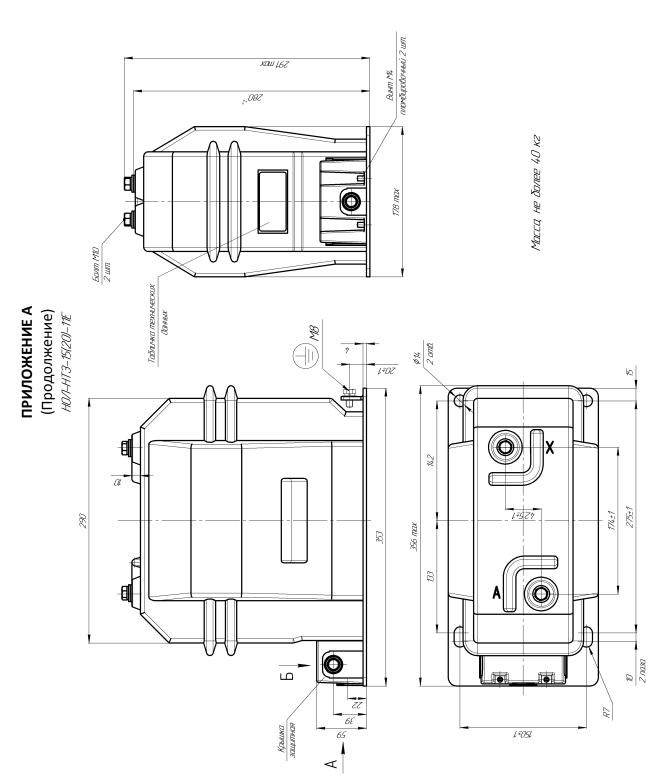
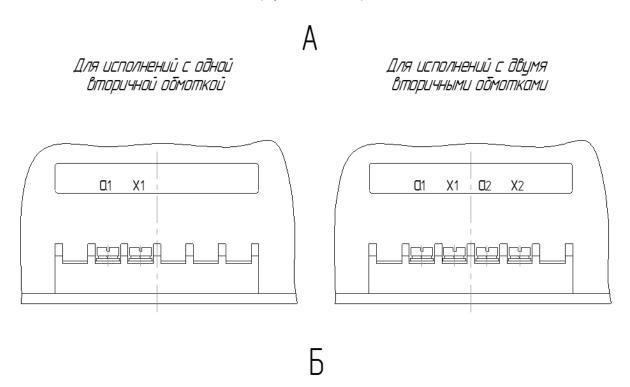



Рисунок А.2 – Габаритные, установочные, присоединительные размеры и масса трансформаторов НОЛ-НТЗ-20-Е Варианты расположения вторичных выводов см. рисунок А.3

ПРИЛОЖЕНИЕ А

(Продолжение)

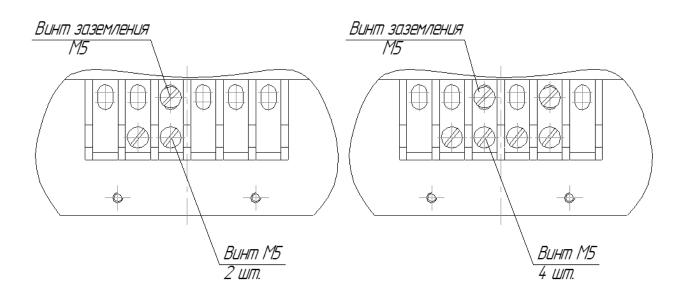


Рисунок А.3 — Варианты расположения вторичных выводов (крышка защитная условно не показана)

ПРИЛОЖЕНИЕ Б (обязательное)

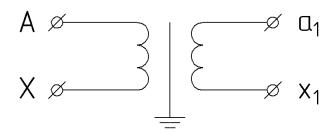


Рисунок Б.1 — Схема электрическая принципиальная трансформаторов НОЛ-HT3-6 (10, 15, 20)-11E с одной вторичной обмоткой

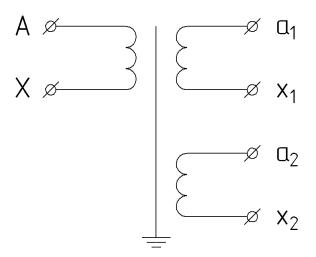


Рисунок Б.2 — Схема электрическая принципиальная трансформаторов НОЛ-НТ3-6 (10, 15, 20)-11E с двумя вторичными обмотками