

ООО «НТЗ «Волхов»

ТРАНСФОРМАТОРЫ ТОКА ТШЛ-НТ3-0,66 УХЛ2, У2, Т2 ТШП-НТ3-0,66 У2, Т2

0.HT3.142.051 P3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

e-mail: <u>ntzv@ntzv.ru</u>, сайт: <u>intzv.ru</u>

СОДЕРЖАНИЕ

Введение	
1 Назначение	
2 Технические данные	4
3 Устройство	6
4 Размещение и монтаж	7
5 Маркировка	7
6 Меры безопасности	7
7 Техническое обслуживание	8
8 Упаковка, транспортирование и хранение	8
9 Условное обозначение трансформатора	9
10 Перечень нормативных документов	11
Приложение А	12
Приложение Б	32

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с конструкцией и техническими характеристиками, а также содержит сведения по транспортированию, хранению, монтажу и эксплуатации трансформаторов тока ТШЛ-НТ3-0,66; ТШП-НТ3-0,66 (именуемые в дальнейшем трансформаторы).

В дополнение к настоящему руководству по эксплуатации следует пользоваться паспортом на трансформаторы 0.НТ3.486.051 ПС.

1 НАЗНАЧЕНИЕ

1.1 Трансформаторы предназначены для установки в комплектные распределительные устройства (КРУ) внутренней установки, в сборные камеры одностороннего обслуживания (КСО), в другие электроустановки и являются комплектующими изделиями.

Трансформаторы обеспечивают передачу сигнала измерительной информации приборам измерения, устройствам защиты, сигнализации, автоматики и управления. Предназначены для использования в цепях коммерческого и технического учетов электроэнергии в электрических установках переменного тока.

- 1.2 Трансформаторы изготавливаются в климатическом исполнении «УХЛ», «У» или «Т» категории размещения 2 по ГОСТ 15150 и предназначены для работы в следующих условиях:
- верхнее значение температуры окружающего воздуха при эксплуатации с учетом перегрева внутри ячейки для исполнения «УХЛ» плюс 55 °C, для исполнения «У» плюс 45 °C; для исполнения «Т» плюс 60 °C;
- нижнее значение температуры окружающего воздуха минус 60 °C для исполнения «УХЛ», минус 50 °C для исполнения «У», минус 10 °C для исполнения «Т»;
- относительная влажность воздуха для исполнения «УХЛ», «У» $100\,\%$ при плюс $25\,^{\circ}$ С, для исполнения «Т» $100\,\%$ при плюс $35\,^{\circ}$ С;
 - высота над уровнем моря не более 1000 м;
- окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы атмосфера типа II по ГОСТ 15150;
 - положение трансформаторов в пространстве любое.
- 1.3 Трансформаторы, предназначенные для использования в системах нормальной эксплуатации атомных станций (именуемых в дальнейшем AC), относятся к классу 4 по $2.6\,$ НП-001.
- 1.4 Трансформаторы, предназначенные для использования в системе важной для безопасности нормальной эксплуатации АС, относятся к классу 3 и имеют классификационное обозначение 3H по 2.6 НП-001.
- 1.5 Трансформаторы, предназначенные для использования в системе безопасности АС, относятся к классу 2 и имеют классификационное обозначение 20 по 2.6 НП-001.

1.6 Для ОАО «РЖД» областью применения трансформаторов являются тяговые подстанции, трансформаторные подстанции и линейные устройства тягового электроснабжения железных дорог.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

- 2.1 Основные технические данные трансформаторов приведены в таблицах 1, 2 и 3. Конкретные значения параметров указаны в паспорте на трансформатор.
- 2.2 Односекундные токи термической стойкости трансформаторов указаны в таблице 4.
- 2.3 Класс нагревостойкости трансформаторов ТШЛ-НТ3-0,66 «В», ТШП-НТ3-0,66 «Е» по ГОСТ 8865 (МЭК 85).

Таблица 1 - Общие технические данные трансформаторов

Наименование параметра	Значение параметра
Номинальное напряжение ¹⁾ , кВ	0,66
Наибольшее рабочее напряжение, кВ	0,72
Наибольший рабочий первичный ток, А	см. таблицу 11 ГОСТ 7746
Номинальный вторичный ток, А	1; 5
Количество вторичных обмоток	до 6 включ.
Номинальная вторичная нагрузка, $B \cdot A$ - с коэффициентом мощности $\cos \phi_2 = 1$ - с коэффициентом мощности $\cos \phi_2 = 0.8$	от 1 до 2,5 включ. от 3 до 100 включ.
Класс точности вторичных обмоток для измерений и учета ²⁾ по ГОСТ 7746 и ГОСТ Р МЭК 61869	0,2S; 0,2; 0,5S; 0,5
Класс точности вторичных обмоток для защиты ²⁾ - по ГОСТ 7746 - по ГОСТ Р МЭК 61869	5P; 10P 5P; 10P; 5PR; 10PR; PX; PXR; TPX; TPY; TPZ
Номинальная предельная кратность вторичных обмоток для защиты с классами точности по ГОСТ 7746	от 2 до 35
Номинальная предельная кратность вторичных обмоток для защиты с классами точности 5P; 10P; 5PR; 10PR по ГОСТ Р МЭК 61869-2	от 2 до 35
Номинальный коэффициент безопасности приборов вторичных обмоток для измерений	от 2 до 35
Номинальный коэффициент расширения тока K _x вторичной обмотки для защиты с классами точности PX и PXR по ГОСТ P MЭК 61869-2, не менее	от 2 до 35
Номинальный коэффициент расширения тока К _х вторичной обмотки для защиты с классами точности РХ и PXR по ГОСТ Р МЭК 61869-2, не менее	от 2 до 35

Продолжение таблицы 1 - Общие технические данные трансформаторов

Симметрический номинальный коэффициент тока короткого замыкания К _{ssc} для защиты с классами точности TPX; TPY; TPZ по ГОСТ Р МЭК 61869-2, не менее	от 1 до 50
Номинальный коэффициент расширенного тока для переходного режима К _{td} для защиты с классами точности TPX; TPY; TPZ по ГОСТ Р МЭК 61869-2, не менее	от 1 до 50
Номинальная частота напряжения сети, Гц	50 или 60 ³⁾

¹⁾ Трансформаторы могут быть установлены на высоковольтных кабельных или шинных линиях с напряжением от 3 до 35 кВ, при условии, что они обеспечивают заданные характеристики, и что изоляция между линией и корпусом трансформатора полностью обеспечивается собственной изоляцией высоковольтной линии.

Таблица 2 - Технические данные трансформаторов

Наименование параметра		Значение параметра										
Тип трансформато ра		ТШЛ-НТЗ-0,66				ТШП-НТЗ-0,66						
Исполнение трансформато ра	01	02	03	04	21,22, 23,24	13	14	15	21,22, 23,24, 25	31	41	61,62,63, 64,65, 71,72,73, 74,75, 81,82,83, 84,85
Номинальный первичный ток, А	50 – 500	50 – 2000	50 – 2500	50 – 5000	50 – 3000	100	100 – 600	600 – 800	50 – 1000	50 – 1200	100 – 800	50 – 8000
Число вторичных обмоток (число выводов), не более	1(2)			2(4)	2(4)				6(12)	3(6)		
Варианты расположения вторичных выводов	А, С	А, С	A, C	А, С	С				_			A, C

Таблица 3 – Характеристики испытательной обмотки

Номинальный вторичный ток испытательной обмотки, А	1; 5; 10; 15; 20 ¹⁾
1) Метрологические характеристики испытательной об	мотки - не нормируются.

²⁾ Трансформаторы изготавливаются с одним значением класса точности и одним соответствующим ему значением номинальной мощности в соответствии с заказом.

³⁾ Для экспортных поставок.

Таблица 4 – Односекундные токи термической стойкости

Номинальный первичный ток, А	Односекундный ток термической стойкости, кА
50	5 – 25
60	6 – 31,5
75, 80	8 – 31,5
100	10 – 40
150	16 – 40
200, 225	20 – 40
250, 275	25 – 40
300, 375	31,5 – 40
400 – 8000	40

з устройство

- 3.1 Трансформаторы выполнены в виде шинной конструкции. Общий вид трансформаторов, габаритные, установочные и присоединительные размеры приведены в приложении А.
 - 3.2 Трансформаторы имеют 2 типа корпусов:
- литой, компаунд на основе эпоксидной смолы для климатических исполнений «УХЛ» и «Т» или на основе полиуретановой смолы для исполнения «У». Компаунд обеспечивает электрическую изоляцию и защиту обмотки от климатических и механических воздействий (для трансформаторов ТШЛ-НТЗ-0,66);
- пластмассовый, заполненный компаундом на основе полиуретановой смолы, который является главной изоляцией и обеспечивает защиту обмоток от климатических и механических воздействий (для трансформаторов ТШП-НТ3-0,66).
- 3.3 Трансформаторы не имеют первичной обмотки. Первичный ввод распределительного устройства в виде кабеля или шины, проходящий через окно трансформаторов служит первичной обмоткой.
- 3.4 Главная изоляция между первичным вводом (токоведущими жилами кабеля или шинами) и вторичной обмоткой трансформаторов на номинальные напряжения свыше 0,66 кВ обеспечивается изоляцией кабеля или шин.
- 3.5 Обмотки трансформаторов размещены каждая на своем магнитопроводе, за исключением исполнений с испытательной обмоткой. Испытательная обмотка T1-T2 предназначена для имитации первичного тока посредством подачи испытательного тока на выводы T1-T2 в процессе испытаний и монтажа. Данная обмотка не предназначена для подключения каких-либо приборов и должна быть разомкнута при эксплуатации.
- 3.6 Выводы вторичных обмоток трансформаторов ТШЛ-НТ3-0,66-01(-02,-03,-04) и ТШП-НТ3-0.66-61(-62,-63,-64,-65,-71,-72,-73,-74,-75,-81,-82,-83,-84,-85) имеют следующие варианты исполнений:
 - А параллельно установочной поверхности;
- C из гибкого провода сечением 2,5 или 4 ${\rm mm}^2$, параллельно установочной поверхности.
- 3.7 Корпус трансформаторов не подлежит заземлению, т.к. не имеет подлежащих заземлению металлических частей.

4 РАЗМЕЩЕНИЕ И МОНТАЖ

- 4.1 Трансформаторы устанавливают в шкафах КРУ, КРУН и КСО в соответствии с чертежами этих изделий. Крепление трансформаторов на месте установки производится с помощью болтов М6, М8 или М10 к элементам крепления, расположенным на основании трансформаторов или через закладные втулки.
- 4.2 При монтаже следует соблюдать требования ГОСТ 10434 для контактных соединений по моменту затяжки:
 - для M6 (2,5±0,5) H·м.

Для крепёжных элементов момент затяжки:

- для M4 (0,4±0,1) H·м;
- для M6 (5±1) H·м;
- для M8 (7±1) H·м;
- для M10 (10±1) H·м.

Провода, присоединяемые к вторичным выводам трансформаторов, должны быть снабжены наконечниками или свернуты в кольцо под винт М6 и облужены. При монтаже следует учитывать, что при направлении тока в первичной цепи от Л1 к Л2 вторичный ток во внешней цепи направлен от И1 к И2.

5 МАРКИРОВКА

- 5.1 Трансформаторы имеют табличку технических данных, выполненную по ГОСТ 7746 и табличку с предупреждающей надписью о высоком напряжении на выводах разомкнутых вторичных обмоток.
- 5.2 Маркировка выводов первичной цепи и вторичных обмоток выполнена методом литья на корпусе трансформаторов или методом липкой аппликации. Допускается выполнять маркировку методом лазерной гравировки. Для трансформаторов маркировка может быть выполнена по IEC 61869-2, согласно таблице 5.

таблица эт маркировка						
Первичная	обмотка	Вторичные	обмотки	Испытательная		
ГОСТ 7746	IEC 61869-2	ГОСТ 7746	IEC 61869-2	ТУ 3414-018-30425794-2016		
Л1	P1	1) N 2)	1) S 2)	T1		
Л2	P2			T2		

¹⁾ Порядковый номер вторичной обмотки.

5.3 Маркировка транспортной тары выполнена по ГОСТ 14192 и нанесена непосредственно на тару.

6 МЕРЫ БЕЗОПАСНОСТИ

6.1 Конструкция, монтаж и эксплуатация трансформаторов должна соответствовать требованиям безопасности по ГОСТ 12.2.007.0 и ГОСТ 12.2.007.3, «Правил технической эксплуатации электроустановок потребителей», «Правил технической эксплуатации электрических станций и сетей Российской Федерации»,

²⁾ Порядковый номер вывода вторичной обмотки.

«Правил устройства электроустановок», «Правил по охране труда при эксплуатации электроустановок».

- 6.2 Не допускается производить какие-либо переключения во вторичных цепях трансформаторов, не убедившись в том, что напряжение с первичной обмотки снято. В процессе испытаний и эксплуатации должна быть исключена возможность размыкания вторичных цепей трансформаторов.
- 6.3 Неиспользуемые в процессе эксплуатации вторичные обмотки необходимо замкнуть закороткой из медного провода сечением не менее 2,5 мм² или алюминиевого провода сечением не менее 4 мм², за исключением испытательной обмотки.

6.4 Внимание! Испытательную обмотку при эксплуатации не закорачивать и не заземлять!

6.5 Для исполнений трансформаторов с ответвлениями вторичной обмотки (исполнение «К») подключение должно производиться к используемым ответвлениям. При этом запрещается использование ответвления на номинальный первичный ток меньшего значения, чем ток, протекающий по первичной цепи. Остальные ответвления вторичной обмотки не закорачиваются и не заземляются.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 При техническом обслуживании трансформаторов необходимо соблюдать правила раздела «Меры безопасности».
- 7.2 Техническое обслуживание проводится в сроки, предусмотренные для технического обслуживания электроустановки, в которую встраиваются трансформаторы.
 - 7.3 Техническое обслуживание проводится в следующем объеме:
- очистка поверхности трансформаторов от пыли и грязи. Снятие окисной пленки с вторичных контактов;
 - внешний осмотр трансформаторов на отсутствие повреждений;
- измерение сопротивления изоляции вторичной обмотки. Проводится мегомметром на 1000 В. Сопротивление должно быть не менее 50 МОм.
- 7.4 Трансформаторы подлежат периодической поверке по методике ГОСТ 8.217. Межповерочный интервал 8 лет.
 - 7.5 Трансформаторы ремонту не подлежат.

Средняя наработка до отказа — 4.10^5 часов.

Средний срок службы – 30 лет.

8 УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

8.1 Трансформаторы транспортируются упакованными в картонные коробки, уложенными и закрепленными на поддонах 800×1200 любым закрытым видом транспорта в условиях транспортирования по группе «С» согласно ГОСТ 23216.

Установка поддонов с трансформаторами в несколько ярусов при транспортировании и хранении категорически запрещается.

8.2 Условия транспортирования трансформаторов в части воздействия климатических факторов – по группе условий хранения 5 или 6 ГОСТ 15150 для исполнений «У», «УХЛ» или «Т» соответственно.

- 8.3 Консервация трансформаторов производится только для изделий климатического исполнения «Т», а также по требованиям заказчика.
- 8.4 Хранение и складирование трансформаторов должно производиться в закрытых помещениях. При хранении трансформаторов должны быть приняты меры против возможных повреждений.
- 8.5 При транспортировании и хранении трансформаторов необходимо избегать резкой смены температур, особенно резкого охлаждения.
 - 8.6 Перед монтажом очистить корпус трансформаторов от пыли и влаги.

9 УСЛОВНОЕ ОБОЗНАЧЕНИЕ ТРАНСФОРМАТОРА

9.1 Пример условного обозначения шинного трансформатора тока с литой изоляцией, изготовленного по ТУ 3414-018-30425794-2016, на номинальное напряжение 0,66 кВ, конструктивного варианта исполнения «01», исполнения вторичных выводов — «А», с вторичной обмоткой класса точности 0,5S, с коэффициентом безопасности (Fs) 10 и нагрузкой 5 В·А для коммерческого учета, на номинальный первичный ток 300 А, номинальный вторичный ток 5 А, с односекундным током термической стойкости 31,5 кА, климатического исполнения «У», категории размещения 2 по ГОСТ 15150 при его заказе и в документации другого изделия:

Трансформатор ТШЛ-НТ3-0,66-01A-0,5SFs10-5-300/5 31,5кА У2 ТУ 3414-018-30425794-2016

9.2 Пример условного обозначения шинного трансформатора тока в пластмассовом корпусе, который заполнен компаундом на основе эпоксидной смолы, изготовленного по ТУ 3414-018-30425794-2016, на номинальное напряжение 0,66 кВ, конструктивного варианта исполнения «14», с двумя вторичными обмотками (первая с классом точности 0,55, с коэффициентом безопасности (Fs) 5 и нагрузкой 5 В-А для коммерческого учета, вторая с классом точности 0,5, с коэффициентом безопасности (Fs) 10 и нагрузкой 10 В-А для технического учета), на номинальный первичный ток 600 А, номинальный вторичный ток 5 А, с односекундным током термической стойкости 40 кА, климатического исполнения «У», категории размещения 2 по ГОСТ 15150 при его заказе и в документации другого изделия:

Трансформатор ТШП-НТ3-0,66-14-0.5SFs5/0.5Fs10-5/10-600/5 40кА У2 ТУ 3414-018-30425794-2016

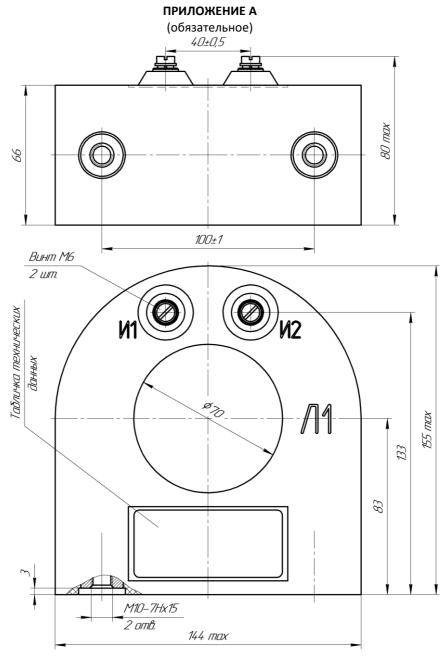
9.3 Пример условного обозначения шинного трансформатора тока в пластмассовом корпусе, который заполнен компаундом на основе полиуретановой смолы, изготовленного по ТУ 3414-018-30425794-2016, на номинальное напряжение 0,66 кВ, конструктивного варианта исполнения «24», с двумя вторичными обмотками (первая с классом точности 5Р с номинальной предельной кратностью 10 и нагрузкой 10 В-А для подключения цепей защиты, вторая испытательная, предназначенная для имитации первичного тока посредством подачи испытательного тока на выводы Т1-Т2 в процессе испытаний и монтажа), на номинальный первичный ток 200 А, номинальный вторичный ток 5 А, номинальный ток испытательной обмотки 10 А, с односекундным током термической стойкости 20 кА, климатического исполнения

10

«У», категории размещения 2 по ГОСТ 15150 при его заказе и в документации другого изделия:

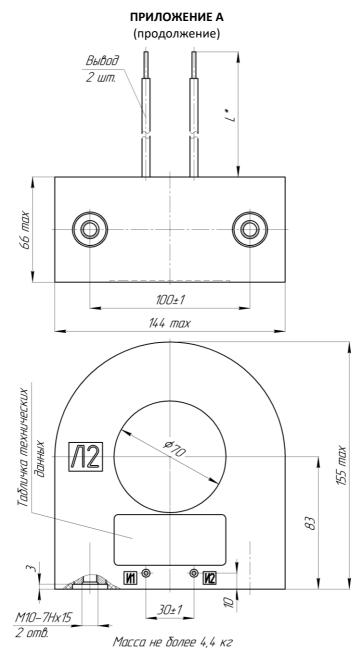
Трансформатор ТШП-НТЗ-0.66-24-5Р10-10-200/5 20кА У2 (Іисп=10А) ТУ 3414-018-30425794-2016

10 ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ


ΓΟCT 7746-2015	Трансформаторы тока. Общие технические условия
ΓΟCT 8.217-2024	ГСИ. Трансформаторы тока. Методика поверки
ΓΟCT 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования
	безопасности (с Изменениями № 1, 2, 3, 4)
ΓΟCT 12.2.007.3-75	ССБТ. Электротехнические устройства на напряжение свыше
	1000 В. Требования безопасности (с Изменениями № 1-4)
ΓΟCT 1516.3-96	Электрооборудование переменного тока на напряжения от
	1 до 750 кВ. Требования к электрической прочности
	изоляции
ΓΟCT 8865-93	Системы электрической изоляции. Оценка нагревостойкости
(MЭK 85-84)	и классификации
ΓΟCT 10434-82	Соединения контактные электрические. Классификация.
	Общие технические требования (с Изменениями № 1, 2, 3)
ΓΟCT 14192-96	Маркировка грузов (с Изменениями № 1, 2, 3)
ΓΟCT 15150-69	Машины, приборы и другие технические изделия.
	Исполнения для различных климатических районов.
	Категории, условия эксплуатации, хранения и
	транспортирования в части воздействия климатических
	факторов внешней среды (с Изменениями № 1, 2, 3, 4, 5)
ΓOCT 23216-78	Изделия электротехнические. Хранение,
	транспортирование, временная противокоррозионная
	защита, упаковка. Общие требования и методы испытаний (с
	Изменениями № 1, 2, 3)
НП-001-15	Федеральные нормы и правила в области использования
	атомной энергии "Общие положения обеспечения
	безопасности атомных станций"
ТУ 3414-018-	Трансформаторы тока ТШЛ-НТЗ-0,66; ТШП-НТЗ-0,66.
30425794-2016	Технические условия
IEC 61869-2:2012	Трансформаторы измерительные. Часть 2.
	Дополнительные требования к трансформаторам тока

Правила технической эксплуатации электрических станций и сетей Российской Федерации. Утверждены Приказом Минэнерго России от 19.06.2003 г. №229 (с изменениями на 11 февраля 2019 года) (редакция, действующая с 23 мая 2019 года)

Правила технической эксплуатации электроустановок потребителей. Утверждены Приказом Минэнерго России от 13.01.2003 г. №6 (с изменениями на 13 сентября 2018 года)


Правила по охране труда при эксплуатации электроустановок (с изменениями на 15 ноября 2018 года). Утверждены приказом Минтруда России от 24.07.2013 г. №328н

Правила устройства электроустановок (ПУЭ). Утверждены Приказом Минэнерго России от 08.07.2002 г. №204

Масса не более 3,2 кг

Рисунок А.1 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-НТ3-0,66-01A

* – Размер L – согласно заказа. Минимум 100 мм. Допуск размера L по ГОСТ 30893.1–2002: ±IT17/2

Рисунок А.2 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-HT3-0,66-01C

(продолжение) 40±0,5 В 130±1 206 max

ПРИЛОЖЕНИЕ А

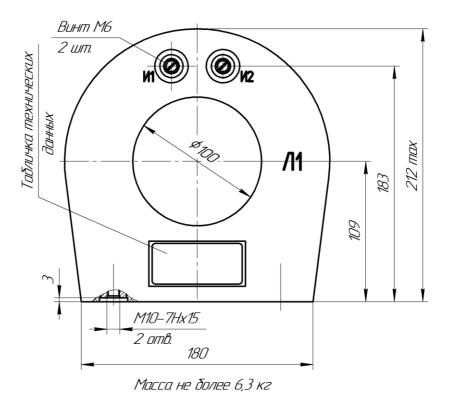
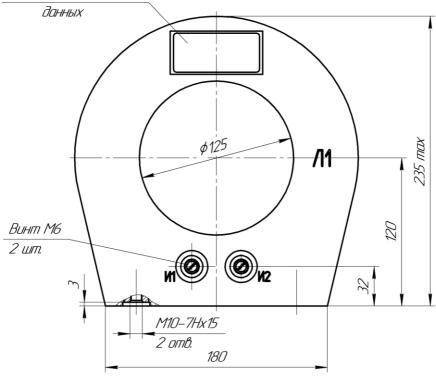


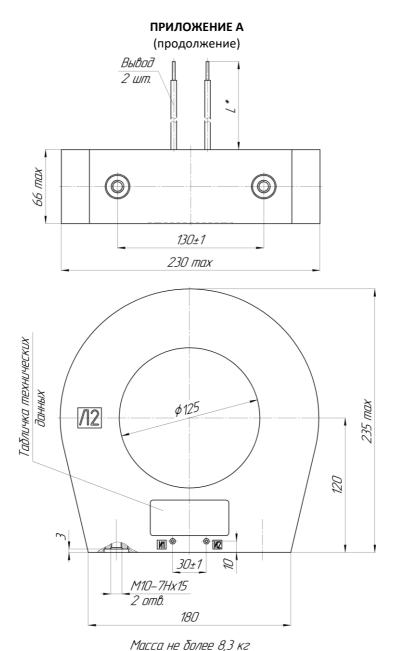
Рисунок А.3 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-HT3-0,66-02A

ПРИЛОЖЕНИЕ А (продолжение) Вывод 2 шт. 99 тах 130±1 206 max Табличка технических данных Л2 601 MI ® **® И2** 30±1 M10-7Hx15 2 omb. 180


Масса не более 7,5 кг

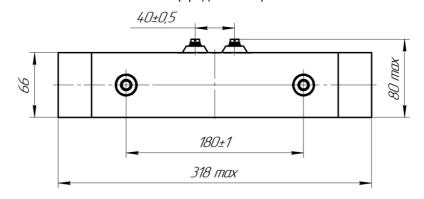
* – Размер L – согласно заказа. Минимум 100 мм. Допуск размера L по ГОСТ 30893.1–2002: ±1T17/2

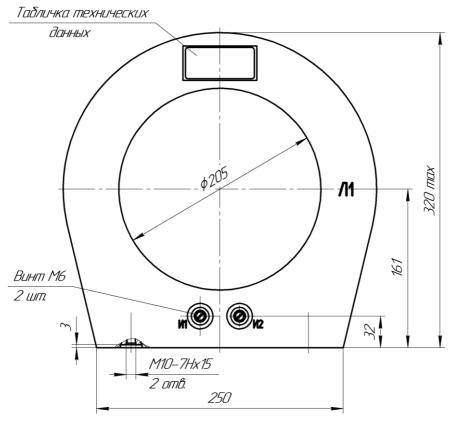
Рисунок А.4 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-HT3-0,66-02C


(продолжение) 40±0,5 130±1 230 тах Табличка технических данных

ПРИЛОЖЕНИЕ А

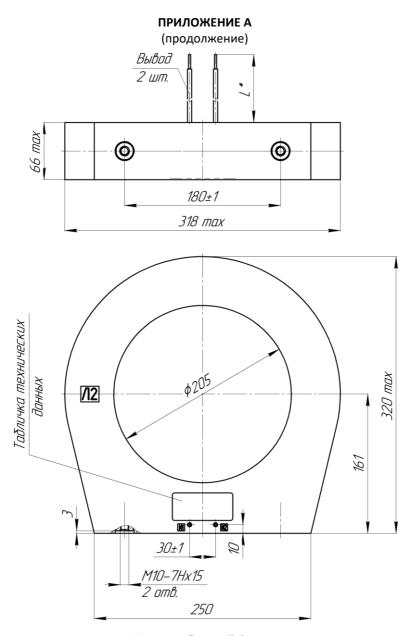
Масса не более 7,1 кг


Рисунок А.5 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-НТ3-0,66-03A



* – Размер L – согласно заказа. Минимум 100 мм. Допуск размера L по ГОСТ 30893.1–2002: ±1T17/2

Рисунок А.6 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-НТ3-0,66-03C


приложение А (продолжение)

Масса не более 11,8 кг

Рисунок А.7 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-НТ3-0,66-04A

Масса не более 13,0 кг

* – Размер L – согласно заказа. Минимум 100 мм. Допуск размера L по ГОСТ 30893.1–2002: ±IT17/2

Рисунок А.8 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-HT3-0,66-04C

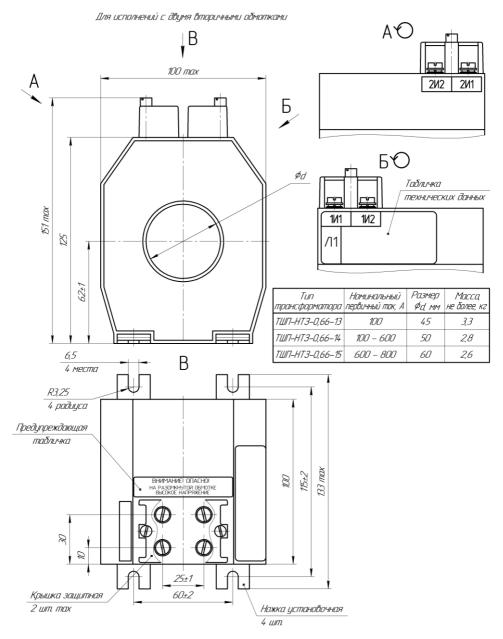
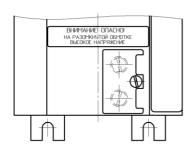
(продолжение) Рисунок 1 Α 120±1 M8x10 2 omb. Масса Табличка технических Тип трансформатора Размер Н, мм Рисунок не более, кг данных ТШЛ-НТЗ-0.66-21С 50 3,5 1 ТШЛ-НТЗ-0,66-22С 7,1 100 Ø 105 ТШЛ-НТЗ-0,66-23С 150 10,6 ТШЛ-НТЗ-0,66-24С 170 2 12,3 ТШЛ-НТЗ-0,66-25С 215 15,8 Масса указана с учетом длины гибких выводов L=100 мм 190 Рисинок 2 Остальное – см. рис. 1 /12 100±1 Вывод тах 8 шт 190 max M8x10 120±1 12 4 omb.

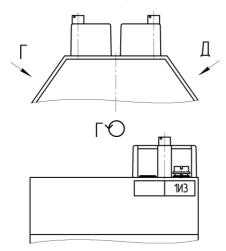
ПРИЛОЖЕНИЕ А

* Размер L – согласно заказа. Минимум 100 мм. Допуск размера L по ГОСТ 30893.1-2002: ± IT17/2.

Рисунок А.9 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-НТЗ-0,66-21С (-22C, -23C, -24C, -25C)

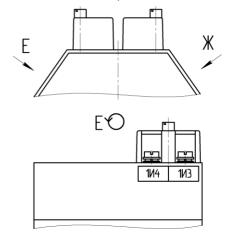
ПРИЛОЖЕНИЕ А (продолжение)


Рисунок А.10 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-HT3-0.66-13,-14,-15

(продолжение)

Для исполнений с одной вторичной обмоткой



Исполнение "К" (для исполнений с одним ответвлением на вторичной обмотке)

Табличка технических данных Л1 1И2

Исполнение "К" (для исполнений с двумя ответвлениями на вторичной обмотке)

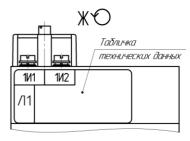
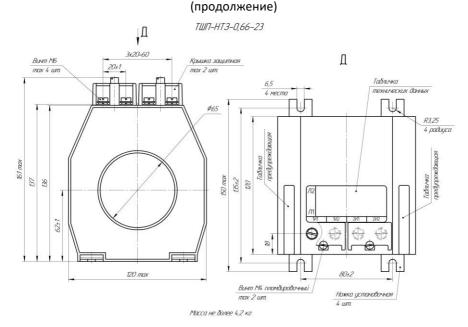
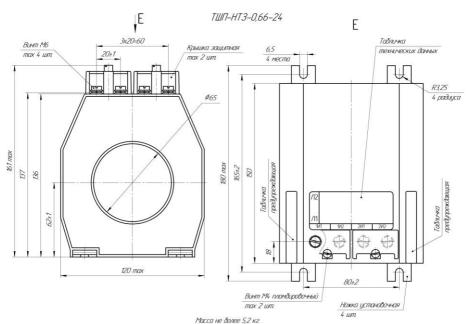
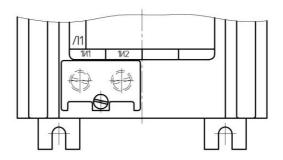



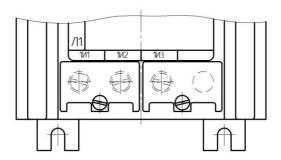
Рисунок А.11 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-HT3-0.66-13,-14,-15

ПРИЛОЖЕНИЕ А (продолжение) ТШП-НТЗ-0,66-21 Α Α 3x20=60 Крышка защитная Винт Мб 6,5 Винт М4 пломбировочный 20±1 тах 2 шт тах 4 шт 4 места тах 2 шт. R3,25 Б 4 радиуса В хош Об 09 Ø65 Табличка технических данных 13 161 max 137 Ножка установочная 80±2 4 шт Только для исполнения с 62+1 испытательной обмоткой Т1–Т2 B**℃**(1) 19+2 6461 120 max 12. Масса не более 2,2 кг Табличка Табличка предупреждающая предупреждающая ТШП-НТЗ-0,66-22 ١ 3x20=60 Γ Винт Мб Крышка защитная 20±1 тах 4 шт тах 2 шт Винт М4 пламбиравачный тах 2 шт \$65 6.5 Табличка 4 места технических данных R3.25 4 радиуса 161 max 137 120 max 62+1 80±2 Ножка установочная 120 max 4 *Ш*

Рисунок А.12 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-HT3-0.66-21,-22

Масса не более 3,2 кг


Рисунок А.13 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-НТ3-0.66-23,-24

(продолжение)

для исполнений с одной вторичной обмоткой

исполнение "K" (для исполнений с одним ответвлением на вторичной обмотке)

исполнение "K" (для исполнений с двумя ответвлениями на вторичной обмотке)

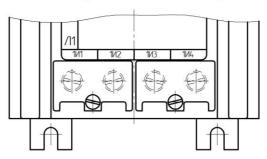
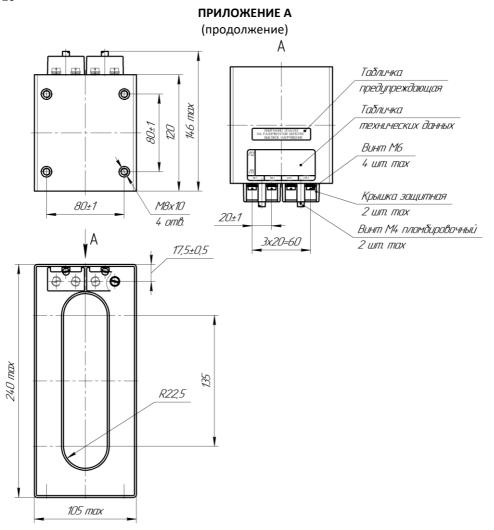



Рисунок А.14 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-НТ3-0.66-21,-22,-23,-24

Масса, не более, 5,5 кг

Рисунок А.15 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-HT3-0.66-31

(продолжение)

Только для исполнения с испытательной обмоткой Т1–Т2

Табличка

Исполнение "К" (для исполнений с одним ответвлением на вторичной обмотке)

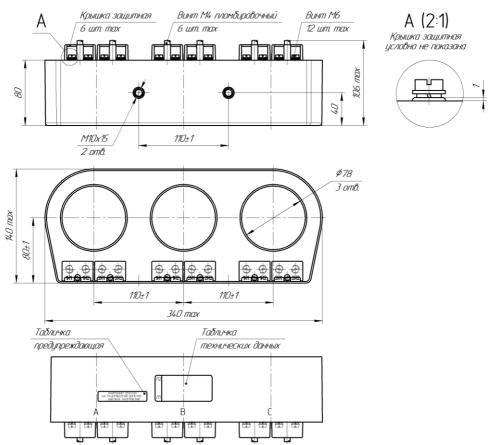

Исполнение "К" (для исполнений с двимя ответвлениями на вторичной обмотке)

Рисунок А.16 – Габаритные, установочные, присоединительные размеры трансформаторов ТШП-НТ3-0.66-31

(продолжение)

Для исполнений с шестью вторичными обмотками

Масса, не более, 7,5 кг

Рисунок А.17 – Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШП-HT3-0.66-41

(продолжение)

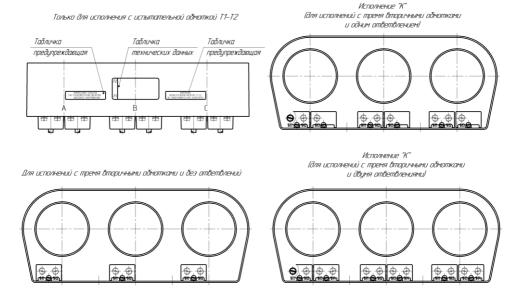


Рисунок А.18 – Габаритные, установочные и присоединительные размеры трансформаторов ТШП-HT3-0.66-41

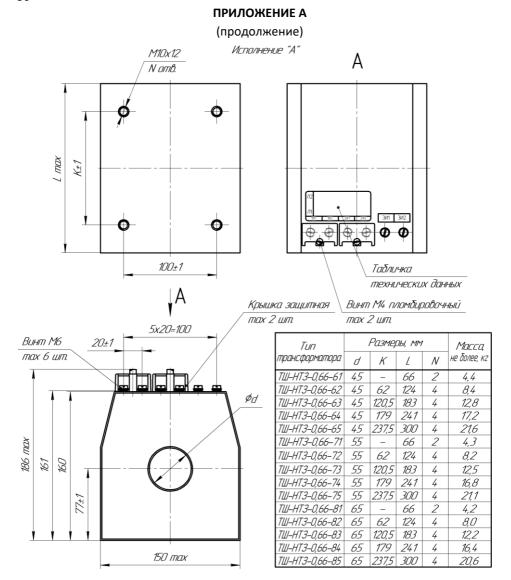
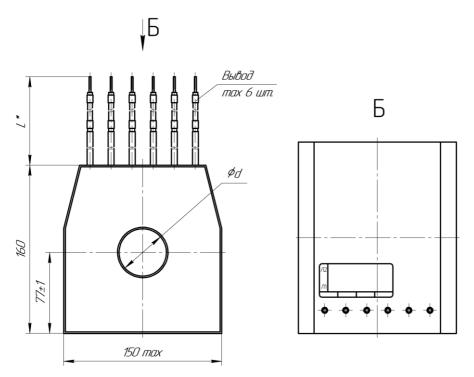



Рисунок А.19 – Габаритные, установочные, присоединительные размеры и масса трансформаторов

ТШП-НТ3-0.66-61,-62,-63,-64,-65,-71,-72,-73,-74,-75,-81,-82,-83,-84,-85 исполнение «А»

(продолжение)

Исполнение "С" с гибкими вторичными выводами Остальное – см. исполнение "А"

*Размер L – согласно заказа. Минимум 100 мм. Допуск размера L по ГОСТ 30893.1-2002: ± IT17/2.

Рисунок А.20 — Габаритные, установочные, присоединительные размеры трансформаторов ТШП-НТ3-0.66-61,-62,-63,-64,-65,-71,-72,-73,-74,-75,-81,-82,-83,-84,-85 исполнение «С»

ПРИЛОЖЕНИЕ Б (обязательное)

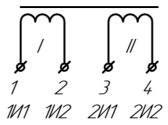


Рисунок Б.1 – Схема электрическая принципиальная для стандартных исполнений

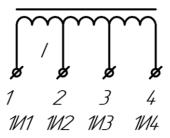


Рисунок Б.2 – Схема электрическая принципиальная для исполнений «К» (с ответвлениями на вторичной обмотке)

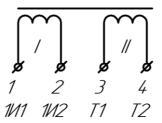


Рисунок Б.3 — Схема электрическая принципиальная для исполнений с испытательной обмоткой