

### ООО «НТЗ «Волхов»

# РЕАКТОР ОДНОФАЗНЫЙ ЛИТОЙ ДЕМПФИРУЮЩИЙ РОЛД-HT3-6(10) УХЛ2, T2

0.HT3.142.074 P3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

## СОДЕРЖАНИЕ

| Введение                                 | 3 |
|------------------------------------------|---|
| <br>1 Назначение                         |   |
| 2 Технические данные                     |   |
| 3 Устройство                             |   |
| 4 Размещение и монтаж                    | 5 |
| 5 Маркировка                             | 5 |
| 6 Меры безопасности                      | 5 |
| 7 Техническое обслуживание               | 5 |
| 8 Упаковка, транспортирование и хранение | 6 |
| 9 Условное обозначение реактора          | 6 |
| 10 Перечень нормативных документов       | 7 |
| Приложение А                             | 8 |
| Приложение Б                             | 9 |

#### ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с конструкцией и техническими характеристиками, а также содержит сведения по транспортированию, хранению, монтажу и эксплуатации реакторов однофазных литых демпфирующих РОЛД-НТЗ-6, РОЛД-НТЗ-10 (именуемые в дальнейшем реакторы).

В дополнение к настоящему руководству по эксплуатации следует пользоваться паспортом на реакторы 0.НТЗ.486.074 ПС.

#### 1 НАЗНАЧЕНИЕ

- 1.1 Реакторы предназначены для установки в конденсаторные батареи последовательно с силовыми косинусными высоковольтными конденсаторами для демпфирования коммутационных токов конденсаторной батареи.
- 1.2 Реакторы изготавливаются в климатическом исполнении «УХЛ» или «Т» категории размещения 2 по ГОСТ 15150 и предназначены для работы в следующих условиях:
- верхнее значение температуры окружающего воздуха при эксплуатации с учетом перегрева внутри конденсаторных батарей для исполнения «УХЛ» плюс 50  $^{\circ}$ C; для исполнения «Т» плюс 55  $^{\circ}$ C;
- нижнее значение температуры окружающего воздуха минус 60  $^{\circ}$ С для исполнения «УХЛ», минус 10  $^{\circ}$ С для исполнения «Т»;
- относительная влажность воздуха для исполнения «УХЛ» 100 % при плюс  $25 \, ^{\circ}$ C, для исполнения «Т» 100 % при плюс  $35 \, ^{\circ}$ C;
  - высота над уровнем моря не более 1000 м;
- окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, химически активных газов и паров в концентрациях, разрушающих металлы атмосфера типа II по ГОСТ 15150;
  - положение реакторов в пространстве любое.

#### 2 ТЕХНИЧЕСКИЕ ДАННЫЕ

- 2.1 Основные технические данные реакторов приведены в таблице 1. Конкретные значения параметров указаны в паспорте на реактор.
  - 2.2 Класс нагревостойкости реакторов «F» по ГОСТ 8865 (МЭК 85).
- 2.3 Допустимый односекундный ток термической стойкости и ток электродинамической стойкости в зависимости от номинального тока приведены в таблице 2.

|                                            | 1                       |    |
|--------------------------------------------|-------------------------|----|
| Наименование параметра                     | Значение параметра      |    |
| Номинальное напряжение, кВ                 | 6                       | 10 |
| Наибольшее рабочее напряжение, кВ          | 7,2                     | 12 |
| Номинальный ток, А                         | 20 – 250                |    |
| Частота, Гц                                | 50 или 60 <sup>1)</sup> |    |
| Номинальная индуктивность, мГн             | 0,03-0,35               |    |
| Испытательное напряжение для класса 6 кВ:  |                         |    |
| - одноминутное промышленной частоты, кВ    | 32                      |    |
| - грозового импульса (полный импульс), кВ  | 60                      |    |
| Испытательное напряжение для класса 10 кВ: |                         |    |
| - одноминутное промышленной частоты, кВ    | 42                      |    |
| - грозового импульса (полный импульс), кВ  | 75                      |    |
| Охлаждение                                 | естественное воздушное  |    |
| Масса, не более, кг                        | 9                       |    |
| 1) Для экспортных поставок.                |                         |    |

Таблица 2 – Токи термической и электродинамической стойкости реакторов

| Номинальный ток,<br>А | Односекундный ток<br>термической стойкости, кА | Ток электродинамической<br>стойкости, кА |
|-----------------------|------------------------------------------------|------------------------------------------|
| 20                    | 0,8                                            | 2,0                                      |
| 25                    | 1,0                                            | 2,5                                      |
| 30                    | 1,2                                            | 3,0                                      |
| 40                    | 1,6                                            | 4,1                                      |
| 50                    | 2,0                                            | 5,1                                      |
| 60                    | 2,4                                            | 6,1                                      |
| 75                    | 3,0                                            | 7,6                                      |
| 80                    | 3,2                                            | 8,1                                      |
| 100                   | 4,0                                            | 10,2                                     |
| 150                   | 6,0                                            | 15,2                                     |
| 200                   | 8,0                                            | 20,3                                     |
| 250                   | 10,0                                           | 25,4                                     |

#### з устройство

- 3.1 Реакторы выполнены в виде опорной конструкции. Габаритные, установочные и присоединительные размеры приведены в приложении А.
- 3.2 Реактор представляет собой обмотку без стального магнитопровода с линейным индуктивным сопротивлением.
- 3.3 Корпус трансформаторов выполнен из эпоксидного компаунда, который одновременно является главной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.
- 3.4 Контактные выводы обмотки реактора выполнены в виде латунного контакта с резьбой M8.

3.5 Реакторы не подлежат заземлению, т.к. не имеют подлежащих заземлению металлических частей.

#### 4 РАЗМЕЩЕНИЕ И МОНТАЖ

- 4.1 Крепление реакторов на месте установки производится с помощью четырех болтов М12 к закладным элементам крепления, расположенным на основании реакторов.
- 4.2 При монтаже следует соблюдать требования ГОСТ 10434 для контактных соединений по моменту затяжки для  $M8 (22\pm1,5)$  H·м. Для крепёжных элементов момент затяжки для  $M12 (30\pm1)$  H·м.
- 4.3 При монтаже необходимо снять окисную пленку с поверхности контактных выводов реакторов и с подводящих шин абразивной салфеткой или мелкой наждачной бумагой.
- 4.4 При установке реактора необходимо выдержать указанные на габаритном чертеже монтажные расстояния до металлоконструкций. Выдержать в соответствии с габаритным чертежом минимальные расстояния между фазами реактора (см. Приложение Б), уменьшение которых приведет к снижению электродинамической стойкости реактора.

#### 5 МАРКИРОВКА

- 5.1 Реакторы имеют табличку технических данных.
- 5.2 Контактные выводы промаркированы в зависимости от фаз реактора: «А», «Х» фаза A; «В», «Y» фаза B; «С», «Z» фаза С. Маркировка выполнена методом лазерной гравировки.
- 5.3 Маркировка транспортной тары выполнена по ГОСТ 14192 и нанесена непосредственно на тару.

#### 6 МЕРЫ БЕЗОПАСНОСТИ

- 6.1 Конструкция, монтаж и эксплуатация реакторов должна соответствовать требованиям безопасности по ГОСТ 12.2.007.0, «Правил технической эксплуатации электроустановок потребителей», «Правил технической эксплуатации электрических станций и сетей Российской Федерации», «Правил устройства электроустановок», «Правил по охране труда при эксплуатации электроустановок».
- 6.2 Настоящие указания мер безопасности являются дополнением к общим действующим правилам и инструкциям по технике безопасности, местным инструкциям и правилам, которыми следует руководствоваться при подготовке к работе, испытаниях и эксплуатации реактора.

#### 7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 При техническом обслуживании реакторов необходимо соблюдать правила раздела «Меры безопасности».
- 7.2 Техническое обслуживание необходимо производить в срок, предусмотренный регламентными работами.
  - 7.3 Техническое обслуживание проводится в следующем объеме:
  - очистка поверхности реакторов от пыли и грязи;

- внешний осмотр реакторов на отсутствие повреждений;
- надежность контактных соединений;
- измерение сопротивления изоляции обмотки. Проводится мегомметром на 1000-2500 В. Сопротивление для вновь вводимых в эксплуатацию реакторов должно быть не менее 0,5 МОм и составлять не менее 0,1 МОм в процессе эксплуатации;
- измерение сопротивления обмотки постоянному току. Приведенное к температуре значение сопротивления не должно отличаться от указанного в паспорте более, чем на 5 %.
  - 7.4 Реакторы ремонту не подлежат.

Средняя наработка до отказа —  $4.10^5$  часов.

Средний срок службы – 30 лет.

#### 8 УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

8.1 Реакторы транспортируются упакованными в картонные коробки, уложенными и закрепленными на поддонах 800×1200 любым закрытым видом транспорта в условиях транспортирования по группе «С» согласно ГОСТ 23216.

Установка поддонов с реакторами в несколько ярусов при транспортировании и хранении категорически запрещается.

- 8.2 Условия транспортирования реакторов в части воздействия климатических факторов по группе условий хранения 5 или 6 ГОСТ 15150 для исполнений «УХЛ» или «Т» соответственно.
- 8.3 Консервация реакторов производится только для изделий климатического исполнения «Т», а также по требованиям заказчика.
- 8.4 Хранение и складирование реакторов должно производиться в закрытых помещениях. При хранении реакторов должны быть приняты меры против возможных повреждений.
- 8.5 При транспортировании и хранении реакторов необходимо избегать резкой смены температур, особенно резкого охлаждения.
  - 8.6 Перед монтажом очистить корпус реакторов от пыли и влаги.

#### 9 УСЛОВНОЕ ОБОЗНАЧЕНИЕ РЕАКТОРА

9.1 Пример условного обозначения реактора однофазного литого демпфирующего РОЛД-НТЗ, изготовленного по ТУ 27.12.10-032-30425794-2023, на номинальное напряжение 10 кВ, на номинальный ток 50 A, на номинальную индуктивность 0,35 мГн, климатического исполнения «УХЛ», категории размещения 2 по ГОСТ 15150, фаза A при его заказе и в документации другого изделия:

Реактор РОЛД-HT3-10-50-0,35 УХЛ2 фаза А ТУ 27.12.10-032-30425794-2023

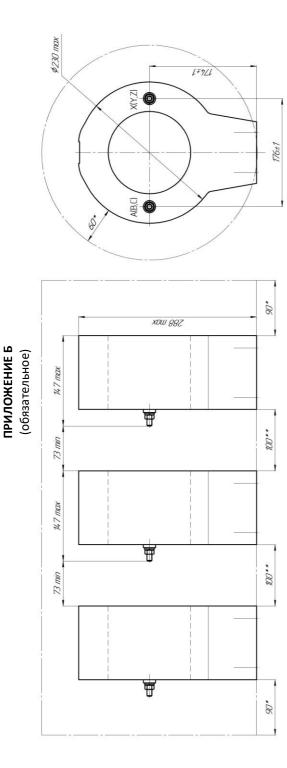
#### 10 ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ

| ΓΟCT 12.2.007.0-75 | ССБТ. Изделия электротехнические. Общие требования     |
|--------------------|--------------------------------------------------------|
|                    | безопасности (с Изменениями № 1, 2, 3, 4)              |
| ГОСТ 8865-93       | Системы электрической изоляции. Оценка                 |
| (MЭK 85-84)        | нагревостойкости и классификации                       |
| ΓΟCT 10434-82      | Соединения контактные электрические. Классификация.    |
|                    | Общие технические требования (с Изменениями № 1, 2, 3) |
| ΓΟCT 14192-96      | Маркировка грузов (с Изменениями №1, 2, 3)             |
| ΓΟCT 14254-2015    | Степени защиты, обеспечиваемые оболочками (Код IP)     |
| (IEC 60529:2013)   |                                                        |
| ΓΟCT 15150-69      | Машины, приборы и другие технические изделия.          |
|                    | Исполнения для различных климатических районов.        |
|                    | Категории, условия эксплуатации, хранения и            |
|                    | транспортирования в части воздействия климатических    |
|                    | факторов внешней среды (с Изменениями № 1, 2, 3, 4, 5) |
| ГОСТ 23216-78      | Изделия электротехнические. Хранение,                  |
|                    | транспортирование, временная противокоррозионная       |
|                    | защита, упаковка. Общие требования и методы испытаний  |
|                    | (с Изменениями № 1, 2, 3)                              |
| ТУ 27.12.10-032-   | Реакторы однофазные литые демпфирующие РОЛД-HT3.       |

Правила технической эксплуатации электрических станций и сетей Российской Федерации. Утверждены Приказом Минэнерго России от 19.06.2003 г. №229 (с изменениями на 13 февраля 2019 года) (редакция, действующая с 23 мая 2019 года)

Технические условия

30425794-2023


Правила технической эксплуатации электроустановок потребителей. Утверждены Приказом Минэнерго России от 13.01.2003 г. №6 (с изменениями на 13 сентября 2018 года)

Правила по охране труда при эксплуатации электроустановок. Утверждены приказом Минтруда России от 15.12.2020 г. №903н (с изменениями на 29 апреля 2022 года)

Правила устройства электроустановок (ПУЭ). Утверждены Приказом Минэнерго России от 08.07.2002 г. №204

# ПРИЛОЖЕНИЕ А (обязательное) 176±1 A(2:1) 120 M8 M12x15 65±1 4 amb. Вывод контактный 100 латунный 230 max Б 50.5 \$230 max Ø 134 \$20 Б A(B,C) X(Y,Z)6 288 max 174±1 Табличка технических данных

Рисунок А.1 – Габаритные, установочные и присоединительные размеры реакторов РОЛД-HT3-6(10)



"Минимально допустимые расстояния между карпусам реактаров и заземляемыми

\*\*Минимально допустимые расстояния между фазами.

частями электрооборудования.

Примечание

Рисунок Б.1 — Минимальные расстояния между фазами реакторов РОЛД-НТ3-6(10)